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Hypersonic flight based on airbreathing propulsion like Scramjet is a challenging research
subject in aerospace science, with strong difficulties related to —but not only— control
design. The present work establishes a realistic model of such a vehicle, and summarizes
difficulties to overcome. Then, a nonlinear control law design is proposed in a suitable
choice of coordinates. The control strategy, relying on Lyapunov theory, aims at stabilizing
phugoid motion and then backstepping the wished attitude behavior. The results obtained
are illustrated by simulation of a realistic model, with a vehicle trajectory varying from
Mach 4 at 20 km to Mach 8 at 30 km.

Nomenclature

h Altitude m
V Velocity m.s−1

γ Flight path angle rad
θ Attitude rad
α Angle of attack (AoA) θ − γ
q Pitch rate rad.s−1

δ Angle of elevators (AoE) rad
S(V ) Similitude factor see (3)
Cm Momentum coefficient
Cl Lift coefficient
Cd Drag coefficient
lref Reference length 6.9 m
Sref Wing area 7 m

Λ(V ) Speed factor
ρ(h) Air density see (1)
m Body mass kg
J Inertial momentum kg.m2

gt Earth’s gravity 9.8 m.s−2

M Mach number V /300
ε Air capturing area m2

Qc Fuel flow kg.s−2

Φi Air to fuel ratio
fs Stoichiometric factor 1/34.572
Isp Specific impulse s
T Thrust N
η Part of controlled thrust

I. Introduction

It is admitted that many fields relied to space activities (strategics, economics) benefit from increased
cruising speed. For sufficiently high speed, the effect of Coriolis acceleration becomes manifest and thus,
makes access to space easier. This invites us to reconsider what space vehicles launch might be and, for
example, give the final touch to the end of a high speed atmospheric cruising flight.

Hypersonic airbreathing vehicle technology is among others evolving possibilities for space vehicles. This
constitutes a major research subject at Onera,1 currently studied throughout the LEA research program.2
Numerous improvements on this challenging technique have been achieved by various teams. Nevertheless,
noticeable technological difficulties affect their potential application: (i) how to increase cruising speed
without dramatically decrease specific impulse and lift-to-drag ratio; (ii) how to design materials able to
ensure rigidity of structure under hard constraints; (iii) how to ensure a robust vehicle control. This is
precisely the topic we discuss in the present work.

The control of this kind of vehicle has been addressed in several ways, relying on linear control theory
(see Ref. 3 and references inside for an overview), dynamic inversion4 and sliding mode control.5, 6 Linear
∗Onera Dprs, 29 avenue de la division Leclerc, BP72 92322 Châtillon Cedex, France.
†Onera Dprs, Chemin de la Hunière, 91761 Palaiseau Cedex, France.
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control offers a simple and efficient way to locally stabilize most of (stabilizable) dynamics process, with large
possibilities of perfect tuning. However, aerospace systems are often supposed to operate in a wide range of
multidimensional state excursions. This suppose to investigate controller interpolation. This may leads to
local instability and makes the global behavior study complex. Dynamic-inversion based control laws allow
to handle these difficulties. Nevertheless, they lead to complex control structures, embedding huge amount
of information in the controller, usually not available in practice. From this point of view, sliding mode
control provide a way to control the vehicle addressed here which override these difficulties. However this
method is prone to introduce chattering —unhealthy high frequency actuators excitation— which strongly
diminishes its efficiency.

An opening to overcome these limitations is offered by a Lyapunov-based nonlinear control, since it
potentially provides a certain degree of robustness and some optimality properties.7 Indeed, robustness of
Lyapunov control is obtained if part of speculative a priori information is overcome by more reliable structural
information. Moreover, Lyapunov theory allows us to use the quasi-full range of the vehicle possibilities,
and thus makes it possible to take into account potential saturations. This work aims at providing a model
of such hypersonic waverider and then studying stability and nonlinear stabilization, by control Lyapunov
function, of a cruising trajectory described in the vertical plane.

The paper is organized as follows. Firstly, we describe our model structure and different general consider-
ations made during our modelling (Section II). The aerodynamic model is detailed and shown to be close to
the one in Ref. 8. We next describe how some known specificities of the vehicle are handled by the nonlinear
control design. Then, we study the stability of the vehicle, in order to give tools ensuring the stabilization
along a trajectory given in terms of speed and altitude (Section III). Next, in Section IV, we detail the way
we deal with a more complete behavior knowledge, leading to the designed controller. Finally, simulation
results are presented to illustrate the performance and the robustness of the approach (Section V).

II. Modelization of the vehicle

A. General considerations

We are addressing the control of a demonstrator vehicle. As a demonstrator, its modelling is not complete,
which is why in the following we describe a general behavior model, to be controlled using robust methods
w.r.t. model uncertainties.

1. Propulsion vs aerodynamics interactions

One specificity of hypersonic waveriders is the strong interaction between the propulsion system and the
aerodynamic behavior. This can be detailed throughout few relevant phenomena:

• The vehicle is designed so that its intrados is the propulsion’s compression system. Then, the aerody-
namic attitude of the vehicle’s body —here, the angle of attack (AoA)— plays a prominent role on the
air flow circulating throughout the propulsion system.

• The AoA modifies the homogeneity of the flow in the Scramjet, and this impacts the direction which
the heat fluxes will take in the nozzle. The exhaust fluxes affect also the aerodynamic behavior of the
vehicle’s rear.

• Given that the propulsion’s direction varies with the state, and nozzle configurations (in addition
to other pre-cited phenomena), propulsion is assumed to generate a perturbation momentum which
destabilizes the vehicle.

An empirical assumption made is to model propulsion’s effect as a simple thrust acting on the velocity
axis of the vehicle. We argue this will have no influence on rotational dynamics. First of all, neglecting
the influence of propulsion on lift is motivated by the fact that thrust is mainly supposed to compensate
drag, i.e. lift divided by drag-to-lift ratio; then assuming a perturbed direction would led to a negligible lift
action. Next, intrados of vehicle, compressing the hypersonic flow, generates a particularly large pitching
momentum which dominates dramatically propulsion’s effect.

This momentum induced must also be compensated by huge control surfaces. In a control perspective,
such a feature is known to induce a non-minimum phase behavior. The latter entails to restrict possibilities
on controller design.3, 4, 9 In Section III, a variable change is proposed to handle this problem.
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Assumption 1. Propulsion is assumed to have the same direction than the velocity vector of vehicle’s center
of mass.
Remark 1. Neglecting these propulsion’s effect is a simplification motivated by the lack of information to
date on these phenomena. It is worth noting that if this had been perfectly known, there would be no
obstruction to take it into account in the present work.

2. Hypersonic speed
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Figure 1. Aerodynamic forces
coefficients with respect to
AoA α, AoE δ, and Mach num-
ber. Particularity of hypersonic
wave riders compared to more con-
ventional planes is the dependency
of forces with respect to AoE. Effect
of high Mach number is a smooth
monotonic decreasing of coefficient
values.

The idea of a vehicle flying with high speed in the atmosphere led us to consider some specificity in our
aerodynamic modelling. Aerodynamic forces are usually modelled as a product between dynamic pressure
—which depends of relative air velocity and air density—, and a coefficient term reflecting wetted surface
of the wing. This coefficient depends on wing’s relative geometry w.r.t. air flow direction, itself depending
from AoA, angle of elevators (AoE) and Mach number, as Figure 1 illustrates.

It is generally admitted in the hypersonic domain that these coefficients decrease w.r.t. Mach number.
Here we rather use a “scaled” aerodynamic forces model, including a similitude factor S(V ). This kind of
modelling is in fact motivated by analogy with Newtonian approximation; similar assumption could be to
assume a Mach-independent lift-to-drag ratio.

The second principal effect of a hypersonic speed in a control perspective is large uncertainties about
aerodynamics coefficients. This motivates us to look for control law which is qualitatively robust to this kind
of uncertainties.

3. Limitation of angle of attack

Too high AoA may lead to the deterioration of the propulsion behavior or to the complete destruction of
the vehicle. Then, AoA and also pitch velocity should be restricted within bounds to insure a safe flight.

B. Aerodynamics modelling

Atmosphere was modelled using a density function

ρ(h) = exp(0.63− 1.54 · 10−4h). (1)

Aerodynamics was identified from computational results visible on Figures 1 and 2. Following the consider-
ations given about hypersonic aerodynamics, we considered a model such as

F? = 1
2
ρ(h)V 2SrefS(V )C?(α, δ), (2)
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where C? is an aerodynamic coefficient varying with angle of attack and AoE. The air speed influence S(V )
is described in hypersonic domain as

S(V ) = 1
0.3 + 0.13M

, (3)

with V 2S(V ) being a monotonic increasing functiona. We modeled lift coefficient Cl as an affine function of
AoA and AoE, and drag such as

Cl = Cl0 + Clαα+ Clδδ, Cd = Cd0 + CdlCl(α, δ)2. (4)
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Figure 2. Aerodynamic mo-
mentum coefficient with re-
spect to AoA α, AoE δ, and
Mach number. Results presented
are significantly close to traditional
fixed wing vehicle’s behavior.

As shown on Figure 2, aerodynamic momentum pitch coefficient is roughly independent of Mach number.
Then we modelled the momentum as

M? = 1
2
ρ(h)V 2Sref lrefC?(α, δ, q), with Cm = Cm0(α, q) + Cmδ(α)δ. (5)

C. Propulsion modelling

Scramjet propulsion relies to very complex phenomena to be modelled, and its strong integration to the
vehicle’s body establishes the need for the propulsion physics to be taken into account at the controller level.
Here, we use semi-empiric considerations to model three major phenomena:

• Air inlet. The vehicle’s state influences the airflow.

• Combustion. Thrust strongly depends on the quantity of fuel injected, and on the air-to-fuel ratio.

• Efficiency. For a given fuel flow, one can assume that above a certain speed limit, speed increment
damages thrust capabilities.

Figure 3 illustrates this kind of modelling w.r.t. fuel flow and AoA for a fixed airspeed, and details our
efficiency model w.r.t. speed and air-to-fuel ratio Φi. In our work, the control variable considered is the
available propulsion ratio.
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Figure 3. Thrust force, varia-
tion w.r.t. AoA α and fuel flow
rate Qc. Specific impulse, vari-
ation w.r.t. Mach and air-to-
fuel ratio Φi. This modelling lead
to strong nonlinear behavior, when
is considered fuel flow rate or air-
to-fuel ratio as controlling input.

Let the thrust be given from specific impulse

T = gtQcIsp(M,Φi). (6)
aIn the case of a subsonic aircraft, we should simply get S(V ) = 1. For hypersonic flows, other similitude function may be

Prandtl-Glauert rule S(V ) ∝ 1√
M2−1

.
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As
Qc = fsQa = Φifsρ(h)V ε̄(α,M), (7)

we can write thrust as
T = gtfsρ(h)ε̄(α,M)V ΦiIsp(M,Φi). (8)

Assuming that specific impulse can be modelled as a product IVsp(α)IΦi
sp (Φi), and noticing that the Scramjet

is usually designed to keep the term ε̄(α0,M)V IVsp(V ) constant for all α0, thrust model is thus

T = ρ(h)ε(α)η, η ∈ [0; 1] (9)

where η ∝ ΦiIΦi
sp (Φi) is a bounded propulsion characteristic which is assumed to be locally invertible, whereas

ρ(h)ε(α) is the maximal available thrust.
Remark 2. Assuming η as a controlled parameter requires certain knowledge of the air flow rate passing
through the propulsion and, so, a suitable description of the characteristic ΦiIΦi

sp (Φi). The latter is possible
since extensive testing of propulsion is usually realized during vehicle’s conception. Using our propulsion
modelling, this characteristic is, in fact, a unimodal function, which actually limits the propulsion operating
range (from origin to a maximum).

D. Rigid body dynamics

The design of the control is made under the following assumptions.

Assumption 2. Mass variations are negligible during flight.

Assumption 3. Gravity is assumed to be a constant and Coriolis force due to earth’s curvature is assumed
to be a constant gravity perturbation; i.e. g = g(h0, V0) for a given reference (h0, V0).

We restrict ourselves to the vertical plane. If R0/A is the orthogonal matrix transforming a velocity
related frame to the inertial frame, we can write

˙¸�R0/AV G = R0/A ˙V G +
∂R0/A

∂γG
V Gγ̇G = R0/A

F

m
, (10)

and left-multiplying (10) by R>0/A leads to the expression of the velocity dynamics (V, γ).
Moreover, since the dynamics modelling is restricted to the plane (O,x0, z0), the rotational dynamics is

straight forward. Hence the complete modelling of the vehicle is defined in vertical plane by

ḣ = V sin γ, (11a)

mV̇ = T (α, h, η)− 1
2
ρ(h)V 2SrefS(V )Cd(α, δ)−mg sin γ, (11b)

mV γ̇ = 1
2
ρ(h)V 2SrefS(V )Cl(α, δ)−mg cos γ, (11c)

θ̇ = q, (11d)

Jq̇ = 1
2
ρ(h)V 2Sref lrefCm(α, δ, q). (11e)

This model is differs from those used to control planes or missiles. Firstly, the thrust is no more an
input variable but a nonlinear function of the state; secondly, as it was argued, the pointed dependency of
aerodynamics forces w.r.t. fins’ angle control is not neglected here as often done elsewhere.

III. Model study

The model of the vehicle has been established in the preceding Section. We look for Lyapunov control
function to globally stabilize the vehicle on a given reference (h0, V0) using the controls (η, δ). Our controller
is structured in the following way.

First, we have to find some coordinates to make appear a bloc triangular structure. Many classical control
designs fail to include the dependency in δ in the γ dynamics. The center of mass path angle is then not a
suitable output to be controlled on such a vehicle.
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Next, we will show that the output block (h, V, γ) of the system is, in fact, a slightly damped stable
nonlinear oscillator, for which we can design a gradient control depending on θ and the propulsive balance.
This kind of controlling a flight is in fact close to what is usually practiced in manual control, and the type
of the proposed control law is known to be efficient, robust, and able to handle saturations.

A. Feedback form of the vehicle

We look for a reduction point, i.e. a point D on the body where the elevators do not influence its vertical
speed at first order. Using composition law, dynamics at this point are given by

˙¸�R0/DV D +
˙ˇ�GD ∧ ΩBody/0 = R0/DRD/A

F

m
. (12)

For the sake of simplicity we introduce Assumption 4, easily satisfied for fixed wings flight vehicles.

Assumption 4. The general movement of the vehicle’s body is mainly translational. That is RD/A ≈ I.

Moreover, we neglect a frame rotation effect, that is RD/0GD ∧ q̇ ≈ GD ∧ q̇. Then, if GD = lexe, we
obtain the (V, γ) dynamics of the point D in inertial frame

mV̇ = T (α, h, η)− 1
2
ρ(h)V 2SrefS(V )Cd(α, δ)−mg sin γ, (13a)

mV γ̇ = 1
2
ρ(h)V 2SrefS(V )Cl(α, δ)−mg cos γ +mleq̇. (13b)

Choosing le as the lever
le = − 1

lref

J

m

∂Cl
∂δ

∂δ

∂Cm
S(V ), (14)

should annihilate δ influence on γ dynamics, since δ appears linearly in Cl and Cm. This variable change is
very similar to those obtained using a singular perturbations theory argument.10

Remark 3. Two points must be underlined in (14): (i) a hypersonic flight characteristic, the similitude
factor, introduces a V -dependency in the change of variable; (ii) the coefficients ∂Cm

∂δ and ∂Cl
∂δ can be variable

according to the modelling level required. Then, this variable change can evolve. Since these complications
reduce the interest of this method, we consider in this work a fixed lever distance for a given reference speed.
Then we assume that the remaining induced perturbation would be negligible.

Let e = 1
m (T (α, h, η) − 1

2ρ(h)V
2SrefS(V )Cd(α, δ)) be the propulsive balance. By reducing γ dynamics,

the vehicle’s behavior becomes

ḣ = V sin γ, (15a)
V̇ = e− g sin γ, (15b)

γ̇ = ρ(h)(Λ0(V ) + (θ − γ)Λ(V ))− g cos γ
V

, (15c)

θ̇ = q, (15d)

Jq̇ = 1
2
ρ(h)V 2Sref lrefCm(α, δ, q), (15e)

where Λ and Λ0 are monotonic increasing functions. Without loss of generalityb, we consider Λ0 = 0 in
the following. This last system is a lower block-triangular system: a slightly-damped nonlinear oscillator
(h, V, γ) controlled by e and θ, called phugoid;11 the attitude θ and the pitch q controlled by δ.

Let us focus on phugoid motion, with e = 0 and θ = θ0. The equilibrium of the system is defined by set
of couples (h0, V0) verifying

ρ(h0)θ0Λ(V0) = g(h0, V0), (16)

then for a θ0 given, there is not an unique equilibrium point but a manifoldc linking altitude to airspeed.
Given the range of our study (under satellization speed), we assume here the functions ρ, Λ and g get strictly
positive values.

bThis is true in particular when S(V ) = 1; but all calculus presented in this section can be rewritten considering Λ0(V ) 6= 0.
cIn the subsonic case, this manifold verify constant dynamic pressure.
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B. Stability of phugoid motion

Stability of Zhukovskii oscillator12 (simplified (V, γ) dynamics) was already established and exploited for
designing nonlinear control.10, 13 This latter work can, in fact, be extended to take into account altitude’s
dynamicsd of the phugoid motion.

Proposition 1 (Stability of phugoid motion). Let a hypersonic flight characterized by a fixed attitude θ =
θ0 > 0, a null propulsive balance e = 0 and the dynamics

ḣ = V sin γ, V̇ = −g sin γ, γ̇ = ρ0(θ0 − γ)Λ(V )− g cos γ
V

. (17)

Then there exists a couple (h0, V0) verifying ρ0Λ(V0) = g/θ0 such that the flight is stable around the equilib-
rium (h0, V0, 0) for all initial state (hi, Vi, γi) ∈ R××R+ [−π;π].

Proof. Consider Lyapunov function

W (h, V, γ) = ρ0θ0

∫ V

V0

Λ(v)− Λ(V0)dv + gV (1− cos γ), (18)

which is positive semi-definite, since Λ is a monotonic increasing function. Its derivative w.r.t. time along
trajectories verifies

˙˛�W (h, V, γ) = −gρ0Λ(V )γ sin γ ≤ 0, (19)

Since gρ0Λ(V ) is positive for all V ∈ R+, this proves stability. From LaSalle theory,14 we thus know that
there is a couple (h0, V0) such that asymptotic convergence of (h, V )→ (h0, V0) is verified.

C. Sufficient conditions for stabilization

The result given by Proposition 1 is a strong qualitative property to be exploited in control design. Stability
of phugoid motion implies that dynamic drift does not have necessarily to be compensated in the control
law. Efficient stabilization requires only

sign e = − sign (ρ0θ0Λ(V )− g cos γ), sign(θ − θ0) = − sign (gV sin γ). (20)

This makes it possible to ensure global stability of flight using a bounded range of propulsive balance or
attitude. The latter is important in order to maintain the integrity of the vehicle and the viability of its
control law. Moreover, the control law does not need to embed a lot of a priori information —this is
particularly true in the case of θ which should depend only from sin γ— and this provides certain qualitative
robustness of the control law.

D. Influence of a heterogeneous atmosphere

The Proposition 1 establishes a stability result in the context of a homogeneous atmosphere. We should
study impact of a heterogeneous atmosphere on stability of phugoid motion. Let ρ(h) replace ρ0 in our
autonomous behavior model (17), ones obtain

˙˛�W (h, V, γ) ≤ gθ0Λ(V )(ρ(h)− ρ0) sin γ. (21)

This drift can be partially eliminated. Consider the Lyapunov function

Wh(h, V, γ) = W (h, V, γ) + θ0g
Λ(V0)
V0

∫ h

h0

ρ(h0)− ρ(s)ds. (22)

This function is positive semi-definite, since the density gradient of atmosphere remains strictly negative.
Its derivative along trajectories is

˙ˇ�Wh(h, V, γ) = −gρ(h)Λ(V )γ sin γ + (ρ(h)− ρ(h0))
Å

Λ(V )− Λ(V0)
V

V0

ã
gθ0 sin γ. (23)

dThe influence of a heterogeneous atmosphere on stability is developed later in the Section III.
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The second remaining term of third order should be locally dominated −gρ(h)Λ(V )γ sin γ. One can notice
that if Λ(V ) ∝ V , then the stability result should be recovered. In fact, effect of hypersonic speed modelled
by S(V ) leads to this kind of behavior: assuming le sufficiently small, a similitude factor such as Prantl-
Glauert rule leads to limle→0 Λ(V ) = S(V )V 2 and is roughly proportional to V for M > 3. For these
reasons, the effect of atmosphere’s heterogeneity can be summarized as:

• influence of atmosphere’s heterogeneity on stability is light, especially compared to control effort;

• using additional assumptions, stability result can be recovered with heterogeneous atmosphere;

• taking into account atmosphere’s heterogeneity in Lyapunov function will not change main control
strategy: since ḣ is not directly actuated, we need supplementary factors in Lyapunov function in
order to be able to dominate the perturbation and stabilize h to a given reference.

E. Airbreathing propulsion

As described in Section II, our aerobic propulsion is a state-dependent function, which allows various way of
choose what should the best suitable input. In the context we developed here, we will argue that η seems to
be an interesting control input for different reasons:

• The fact that η appears linearly in the model leads to quite simple control law, verifying qualitative
robustness. This affine behavior is no longer met if we consider fuel flow rate Qc or air-to-fuel ratio Φi.

• In practice, the operating range of η is roughly linear w.r.t. Φi which is an significant physical parameter
to qualify combustion.

• Locally, under some standard assumption, for a given fixed control η0 the vehicle remains stable.

This last stability result is similar to a case of anaerobic propulsion. Our choice of η as input variable
leads to the propulsive balance equation

e(h, V, γ, θ) = 1
m
ρ(h)ε(α)

Å
η − Cd(α, δ)

2ε(α)
SrefS(V )V 2

ã
, (24)

with η as a control parameter. From this, deriving W (h, V, γ) along trajectories gives

˙ˇ�Wh(h, V, γ) =
˙ˇ�Wh(h, V, γ)

∣∣∣∣
e=0

+ (ρ0θ0Λ(V )− g cos γ) ρ(h)ε(α)
m

Å
η − Cd(α, δ)

2ε(α)
SrefS(V )V 2

ã
. (25)

For all admissible δ0, the characteristic Cd(α, δ)/ε(α) is an unimodal function of α with a minima in the
normal operating range. A standard argument from singular perturbation theory10, 15 allows us to handle
Cd(α, δ)/ε(α) as a quasi-constant parameter in context of phugoid motion. Then, assuming cos γ ≈ 1, the
vehicle will be stabilized at the value V0 which satisfies η0 = 1

2Cd(α, δ)/ε(α)SrefS(V0)V 2
0 . This result is

provided by the fact that Λ(V ) and S(V )V 2 are both monotonically increasing functions. Stability is then
a logical consequence of energy dissipation by drag.

IV. Realization of the control law

Preceding section was dedicated to study phugoid motion’s properties and how to take into account
these properties in order to define a controller. To establish the final control law, we also need (i) to ensure
convergence of h to its reference; and (ii) to back-step the result obtained in order to ensure the stabilization
of the model (15).

A. Stabilization of h→ h0

Stabilization of h is made possible by using new term factor in the Lyapunov function. From the model
structure, we suggest to use forwarding,16 and a modified version of forwarding described in Ref. 17.
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1. Forwarding

Consider ψe(gh+ 1
2V

2−E0), with E0 = gh0+ 1
2V

2
0 defined as an total energy objective term, and ψe : R→ R+

a Lipschitz positive definite function. Its derivative along trajectories verifies

˙ˇ�
ψe

Å
gh+ 1

2
V 2 − E0

ã
= ψ′V

Å
gh+ 1

2
V 2 − E0

ã
(gV sin γ + V (e− g sin γ)) , (26)

= ψ′V

Å
gh+ 1

2
V 2 − E0

ã
V e (h, V, γ, θ) , (27)

which is affine in control. From this, considering the propulsive balance controlled, stability of dynamic drift
is unchanged (energy conservation of non-dragged motion). This allows us to stabilize altitude to a given
reference, by modifying energy level via the thrust.

2. Forwarding mod{LgV }

The use of forwarding is a physically nice way to handle altitude stabilization but, in this case, is conservative.
This is an interesting feature if we aim at saving energy, but if our interest lies in reaching a specific value
of altitude, this will not prove very efficient. For that purpose, notice the dynamic of h, which is 1

g
∂Wh

∂γ : a
factor allowing us to eliminate any h-based control objective via θ.

Consider the term ψγ(h − h0), with ψγ : R → R+ Lipschitz and positive definite. Its derivative along
trajectories is

˙˛�ψγ(h− h0) = ψ′γ(h− h0)V sin γ = ψ′γ(h− h0)
1
g

∂Wh

∂γ
, (28)

Since the term ∂Wh

∂γ is in factor, the cross term will be easily eliminated by defining a suitable control law
for θ. Convergence of h to a given reference is thus provided by a LaSalle argument.14

B. Guidance control choice

It appears that there is a wide variety of implementation of controllers stabilizing phugoid motion evolving
in (h, V, γ) ∈ R×R+× [−π;π]. Here we summarize the structure of our implemented controller. We consider
the Lyapunov function

W0(h, V, γ) = Wh(h, V, γ) + ψγ(h− h0) + ψe(gh+ 1
2
V 2 − E0), (29)

with E0 = gh0 + 1
2V

2
0 . The functions ψ? are defined as

ψγ(s) =
∫ s

0
sat(kψγr, hθ, h̄θ)dr, ψe(s) =

∫ s

0
sat(kψer, E, Ē)dr, (30)

where sat(r, r, r̄) = min(max(r, r), r̄). Its derivative along trajectories is

˙ˇ�W0(h, V, γ) =
˙ˇ�W0(h, V, γ)

∣∣∣∣
e=0, θ=θ0

+ V sin γ
Å
gρ(h)(θ − θ0)

Λ(V )
V

+ ψ′γ

ã
+ (ρ0θ0Λ(V )− g cos γ + ψ′eV ) ρ(h)ε(α)

m

Å
η − Cd(α, δ)

2ε(α)
SrefS(V )V 2

ã
. (31)

In order to make the derivative negative, we choose controls as

θc = θ0 −
V

gρ(h)Λ(V )
ψ′γ(h− h0)− kγγ, (32a)

ηc = Cd(α, δ)
2ε(α)

SrefS(V )V 2 − ke
1
m
ρ(h)ε(α)

Å
ρ0θ0Λ(V )− g cos γ + V ψ′e(gh+ 1

2
V 2 − E0)

ã
, (32b)

η = sat(ηc, η, η̄), θ = sat(θc, θ, θ̄). (32c)
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Under arbitrary bounded constraints, this control law will then achieve asymptotic stability of a couple
(h0, V0). The given bounds must be such that they provide the way to counteract the drifts due to drag and
altitude objective ψ′γ . In fact, this is nothing else than a controllability assumption.

At this stage, the main critical information embedded in the controller is the term Cd(α, δ)/ε(α), which
can be partially unknown and difficult to measure or reconstruct. Most of the remaining terms are relied to
physical laws, directly measurable parameters, or multiplicative functions with known sign. This property
is important in order to keep qualitative robustness of the control law.

C. Attitude control

Stabilization of the phugoid motion assumes that θ is a directly available control. Actually, θ can be seen
as the output of a slightly damped fast oscillator system. From the triangular structure of the system, we
propose to stabilize it by rendering attractive and stable a manifold θc(h, V, γ) given by control law (32c).
Backstepping18 provides an efficient way to extend our control law by this manner, and ensuring assignability
of the Lyapunov function, given the integrators chain elevators→angular speed→attitude.10, 19

Consider the rotational dynamic

θ̇ = q, q̇ = 1
2J
ρ(h)V 2Sref lrefCm(α, δ, q), (33)

and the Lyapunov function (29). Its derivative is

˙ˇ�W0(h, V, γ) =
˙ˇ�W0(h, V, γ)

∣∣∣∣
θ=θc

+ g sin γρ(h)Λ(V )(θ − θc). (34)

Then, extending the Lyapunov function as

W1(h, V, γ, θ) = W0(h, V, γ) + 1
2
(θ − θc)2, (35)

its derivative is

˙ˇ�W1(h, V, γ, θ) =
˙ˇ�W0(h, V, γ)

∣∣∣∣
θ=θc

+ (θ − θc)
(
g sin γρ(h)Λ(V ) + q − θ̇c

)
. (36)

If we are able to ensure the convergence of q toward

qc = − sat(kq(θ − θc), q, q̄) + θ̇c − g sin γρ(h)Λ(V ), (37)

the subsystem (h, V, γ, θ) would thus be stabilized, and this achieve the first step of backstepping. The next
step is the stabilization of the overall system: extending Lyapunov function as

W2(h, V, γ, θ, q) = W1(h, V, γ, θ) + 1
2
(q − qc)2, (38)

and derivative give

˙ˇ�W2(h, V, γ, θ, q) =
˙ˇ�W1(h, V, γ, θ)

∣∣∣∣
q=qc

+ (q − qc)
Å
θ − θc + 1

2J
ρ(h)V 2Sref lrefCm(α, δ, q)− q̇c

ã
. (39)

Then, finally, a control law stabilizing our vehicle described by (15) is

δ = − sat(Q, δ, δ̄)− Cm0(α, q)
Cmδ(α)

+ (q̇c + θc − θ)
2J

ρ(h)V 2Sref lrefCmδ(α)
, (40)

with Q = 1
2J ρ(h)V

2Sref lrefCmδ(α)(q − qc).
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Figure 4. Trajectory simulated during flight.

V. Simulations and comments

A simulation has been made, using the controller (40). The maximal thrust-to-mass ratio of the simulated
vehicle is about 3 at Mach 8, with a lift-to-drag ratio about to 3.7. The vehicle’s initial mass is 5 000 kg
which consist for half of propellant. Measurement of state and actuators (η, δ) are considered perfect. The
simulation implements a complex knowledge modelling: aerodynamics comes from table lookup; propulsion
is considered asymmetric; a strongly nonlinear air inlet was considered.

In practice, modelling is known to provoke large quantitative errors, especially about forces and momen-
tum prediction. As an example, at Mach 8, the following values were monitored: (i) aerodynamics torque
was predicted with a factor 0.8 to 1.5 compared to simulation model, depending on configuration; (ii) drag
and lift coefficient were predicted respectively 76% and 68% besides their values used for simulation; (iii)
propulsion was predicted 50% besides its value used for simulation. In the control implementation, η is
computed as a proportional to Φi.
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Figure 5. Simulation: convergence of h and V to references.

Figure 4 presents the trajectory of the simulated flight using the control law (40). This trajectory aims at
following a succession of references (h0, V0). The same controller was used during all the flight. Convergence
of altitude and speed with respect to time is presented on Figure 5. As it is shown, large uncertainties on the
model leads here to asymptotic errors on the reference followed, but without affecting stability properties.
The maximal available thrust is used whenever necessary.

On Figure 6, is shown the behavior of the controlled vehicle subject to an altitude and Mach reference
step encountered at t = 2000 s. A maximal bound of 8 deg on angle of attack is respected during ascension
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Figure 6. Simulation: zoom on an altitude reference’s step.

which actually limits γ̇. These bounds are chosen to limit thermal fluxes, load factor, or to protect air inlet
from an exhibition to hypersonic flow.

The figure 7 illustrates more precisely this α-bounded behavior. The vehicle was actually launched at
h = 22 km, Mach 4. The initial values γ = −10 deg and q = −10 deg.s−1 have been chosen as rather
tough initial condition in order to illustrate some extreme behavior. Therefore, the control first increases
and stabilizes the attitude in order to use the maximal allowed given excursion value for AoA. This pulling
up corrects quickly the flight path angle, until it becomes sufficiently secure to mainly correct altitude. The
end of the stabilization is finally achieved in the linear range of the intermediate control function sat(θc, θ, θ̄)
given in (32c). This kind of strong nonlinear bound provides interesting tools to extend attraction domain
of the controller, with respect to some viability constraint.

VI. Conclusion

This paper has presented the controller synthesis of the longitudinal mode of a hypersonic vehicle with
airbreathing propulsion on a cruising trajectory. To this end, a complete modelling was established, followed
by a summary of difficulties to overcome. We argued these difficulties may be viewed as three relevant
phenomena:

• The complexity of the propulsion system. We reduced the complexity of the propulsion system by
considering as a control the ratio to the maximal available thrust. This variable control appears to be
roughly proportional to a characteristic of the propulsion system.

• The non minimum phase behavior. Under the main hypothesis of an affine dependency of lift and
torque w.r.t. angle of elevators, we proposed a change of variable suitable to avoid this structural
difficulty.

• The quantitative uncertainties on knowledge model. As we argued, the way we should robustify
our control structure from quantitative uncertainty consists of making control laws linked to reliable
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Figure 7. Simulation: zoom on unhealthy launch situation.

information. To this end, our intermediate control law (32c) mainly depends on γ, and h, which
are commonly well measured. An additional feature provided by this control law is simplicity: on-
line computation is then easily ensured. The control law is also provided with its associated Lyapunov
function which gives an appropriate tool to guarantee gain margin w.r.t. model uncertainties, structured
or not.

The result obtained is a nonlinear control law which ensure global stability property on all the domain of
validity of the model. Complexity of propulsion and aerodynamic structure has been taken into account,
and this work might be specialized to vehicles with anaerobic propulsion system, or operating in subsonic
domain. This controller offers lot of degrees of freedom; as an example, the controller might be locally
identified as the solution of a given optimal control, for example a LQR design.

This comes from a deep analysis of phugoid motion from Lyapunov point of view. This was done using
few assumptions which have been discussed. The point of view adopted is to consider flight as a conservative
motion, and thus realize a gradient control which allows us to take into account viability properties. To
the knowledge of the authors, this property was never exploited to design nonlinear control of waveriders.
Gradient control offers the property to be robust with a rational use of control effort: no high gain properties
are thus exploited.

The potential limits of this control law are the following: (i) backstepping is an efficient way to extend
Lyapunov function and globally control the vehicle. However it reintroduces complexity and does not take
advantage of a possible stability of rotational motion; (ii) in the same way, backstepping does not offer
efficient ways to deal with actuator saturation, in the end of a control chain; (iii) in spite of qualitative
robustness properties, our controller does not ensure a strict asymptotic convergence to the reference: this
is a lack of quantitative robustness. These different issues are currently under investigation, as well as the
extension of the approach to a 6-DOF flight.
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