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Abstract: Nowadays, airbreathing vehicle’s control represents a very motivating challenge, as
it includes the respect of some physical constraints, hard nonlinearities in thrust operation, and
also a non minimum phase behavior due to fins’ size. In this paper we describe methods for
simultaneous guidance and control nonlinear laws design relying on Lyapunov functions theory.
Some simulation are presented, based on a realistic modelling of such a vehicle.
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1. NOMENCLATURE

ρ Air density exp(0.63−1.54 10−4h)

m Body mass kg
g0 Gravity 9.8 m.s−2

J Inertial momentum kg.m2

M Mach number V /300
lref Reference length 6.9 m
fs Stoichiometric factor 1/34.572
Sref Wing area 7 m
h Altitude km
V Velocity m.s−1

γ Flight path angle rad
α Angle of attack (AoA) rad
q Pitch rate rad.s−1

δ Angle of elevators rad
d Drag factor 1

2mρSrefC̄D
Λ(V ) Pressure factor w.r.t. V V 2

0.3+0.13M
l Lift factor 1

2mρSrefC̄L
CM Momentum coefficient
C̄L Reduced lift coefficient
C̄D Reduced drag coefficient
f Lift-to-drag ratio l

d
ε Air capturing area m2

Qc Fuel flow kg.s−2

Φi Air to fuel ratio
Isp Specific impulse s
IVsp Specific impulse w.r.t. V Isp0

M−1.371
T Thrust N
t Thrust factor T

m
η Thrust ratio

2. INTRODUCTION

The various interests of airbreathing propulsion had been
identified for a long time in various applications, see e.g.
Lentsch et al. (2003) which resume airbreathing vehicle’s

development in Onera, or Falempin and Serre (2008) for a
description of LEA project status. As an example, in the
missile domain, hypersonic cruise at high altitude tends
to insure long dynamic range and decreases interception’s
risks. In the case of spacecraft applications, the ability to
use air-picked oxydizer on a major part of the trajectory
could strongly increase the mass ratio to orbital speed
(currently oxydizer is close to 75% of the mass of a
launcher like Ariane V).

Controlling such a vehicle has been addressed in several
ways, relying on linear control theory (see e.g. Sigthorsson
et al. (2008) and references inside), dynamic inversion, and
sliding-modes control (see Wang and Stengel (2000) and
Xu and Ioannou (2004)). However, most of these works did
not considered hard nonlinearities induced by propulsion
system and non minimum phase behavior.

Our work aims at providing a model of such a vehicle,
and then studying stability and nonlinear stabilisation by
control Lyapunov function along a trajectory described in
the vertical plane. Lyapunov theory allows us using the
full range of our different actuators, taking in account
potential saturations. It is also known to insure certain
degree of robustness and optimality properties.

The paper is organized as follow. We firstly describe in
Sections 3 and 4 the model structure and the different as-
sumptions made on the modelling structure of the aerody-
namics and thrust. Our aerodynamic structure is designed
from semi-empiric methods, and the resulting model struc-
ture similar to what has been published in Parker et al.
(2007). We will next assume in Section 5 that a reference
trajectory exists in terms of flight speed and path angle.
We aim at designing in Section 6 a closed-loop guidance
and control law that will stabilize the vehicle along this
trajectory. In this paper, focuses will be put on specificities
brought by these waverider concepts, compared with more
traditional aircrafts. Finally, examples will be presented in
Section 7 to illustrate the performances of the approach.
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Fig. 1. Aerodynamic forces coefficients with respect to
angle of attack, angle of elevators, and Mach number.

3. MODELISATION OF THE VEHICLE’S DYNAMIC

3.1 Aerodynamic forces

Aerodynamic forces are usually modelled as a product of
dynamic pressure —which depends of relative air velocity
and air density—, and a coefficient term reflecting wetted
surface of the wing. This coefficient depends on wing’s
geometry and relative air flow direction:

F? =
1
2
ρV 2SrefC?, (1)

where C? is an aerodynamic coefficient. It varies with angle
of attack, angle of elevators and Mach number; as Figure 1
illustrates, it is well known in the hypersonic domain that
the C? coefficients decrease w.r.t. Mach number. Here we
rather use an aerodynamic force model like

F? =
1
2
ρ(h)Λ(V )C?(α, δ), (2)

where Λ(V ) is a monotonic increasing function relying on
flow pressure 1 . We will use

Λ(V ) =
V 2

s0 + s1V
. (3)

This kind of modelling is, in fact, motivated by analogy
with hypersonic Newtonian approximation, and it will
be assumed consequently a Mach-independent lift-to-drag
ratio. This property will be exploited by the control
presented in the following.

We finally modelled our forces coefficients as a linearly
parameterized function in (α, δ) using data obtained from
semi-empiric methods (see Figure 1 and 2):

CL = LL (1 α δ)> , (4)

CD = LD (1 α δ)> + (α δ) QD (α δ)> . (5)

3.2 Aerodynamic momentum

Similarly to the aerodynamics forces, aerodynamic mo-
mentum is usually modelled as

M? =
1
2
ρV 2Sref lrefC?. (6)

1 In the case of a subsonic aircraft, we can simply get Λ(V ) = V 2.
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Fig. 2. Aerodynamic moment coefficient with respect to
angle of attack, angle of elevators, and Mach number.

As it can be seen on Figure 2, aerodynamic pitch coefficient
is roughly independent from Mach, and varies quasi-
linearly with angle of attack and angle of elevators. There
exists also a damping effect to be added, assumed to be
linear in lref

V q. So we modelled the momentum coefficient
as the linearly parameterized function:

CM = CM0 +CMαα+CMq
lref

V
q+ (CMδ0 + CMδαα) δ. (7)

3.3 Scramjet thrust

Scramjet propulsion is a very complex phenomenon which
will be modelled using a specific impulse function depend-
ing on Mach number and air-fuel ratio:

T = g0QcIsp(M,Φi). (8)
Figure 3 illustrates the input/output behavior of such a
model. It appears that specific impulse can itself be split
as a product of two terms:

• the dependency on Mach —relying on efficiency—
monotonic and decreasing in all hypersonic domain,
which can be assimilated to a dependency in V ;

• the dependency on air-fuel ratio, an unimodal func-
tion passing through a maximum near Φi = 0.7.

As
Qc = ΦifsQA = ΦifsρV ε̄(α,M), (9)

we can rewrite equation (8) as

T = g0fsρε̄(α,M)ΦiIΦi
sp (Φi)V IVsp(V ), (10)

but since the Scramjet is usually designed to keep the term
ρε̄(α0,M)V constant, we thus can model thrust as 2

T = mε(α)IVsp(V )η, η ∈ [0; 1] (11)

where η ∝ ΦiIΦi
sp (Φi) is a bounded propulsion character-

istic which is assumed to be locally invertible. Finally we
modelled air-captation model as a locally affine function

ε(α) = max(ε0,min(ε00 + ε0αα, ε10 + ε1αα)), (12)
and thrust efficiency w.r.t. Mach as

IVsp(V ) = (i0 + iMM)−1 . (13)
where i0 and iM are assumed constants.
Remark 1. We assume in this paper that η can be a con-
trolled parameter. This requires knowing the air flow rate
passing through the propulsion and having good descrip-
tion of the characteristic ΦiIΦi

sp (Φi). The latter is possible
since extensive testing of propulsion is realized during
vehicle’s conception. Using our propulsion modelling, this
characteristic is, in fact, an unimodal function, which
actually limits the propulsion operating range.
2 One can remark that to simplify notation, ε include some factors.
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3.4 Rigid body mechanics

We restrict ourselves to the vertical plane and assume that
the mass does not vary during flight. Consequently, we can
apply Newton’s dynamics theory. So, by noting RA→0 the
orthogonal matrix transforming a velocity related frame
to the inertial frame, we can write

˙¸�RA→0V = RA→0V̇ +
∂RA→0

∂γ
Vγ̇ = RA→0

F
m

, (14)

and left-multiplying (14) by R>A→0 leads to the expression
of the velocity dynamics (V, γ).

Moreover, since the dynamics modeling is restricted to
the plane (O,x0, z0), the rotational dynamic is straight
forward. Hence the complete modelling of the vehicle is
defined in vertical plane by

V̇ =
1
m

F.xA, (15a)

γ̇ =
1
mV

F.zA, (15b)

α̇ = q − γ̇, (15c)

q̇ =
M

J
, (15d)

where xA and zA are velocity related frame axes.

4. SHAPING UP THE PLANT IN FEEDBACK FORM

As can be seen on Figure 1, there is a strong dependency of
force coefficients w.r.t. elevator angles. This technological
specificity —very different from what can be observed in
most aircraft models where the forces induced by control
surface is neglected— is due to the presence of huge control
wings necessary to counteract the momentum induced by
the intrados of the vehicle. In a control perspective, such a
feature is known to induce a non-minimum phase behavior;
for more details, see e.g. Parker et al. (2007) and discussion
in Menon (2001) following Wang and Stengel (2000).

Since there exists a time scale separation between rota-
tional dynamic and velocity dynamic, we treat this prob-
lem as a singularly perturbed hierarchical control.

4.1 Singularly perturbed hierarchical control

Theorem 2. Let a singular perturbed and sufficiently
smooth system be

ẋ = f(x, z, u), (16a)
εż = g(x, z, u), (16b)

where g(x, z, u) is affine in u and u = φf (z, zc) is a fast x-
parameterized control law stabilising exponentially z → zc

uniformly in x when ε → 0. Suppose that the equation
g(x, zc, u) = 0 have only one isolated root given by u =
ϕ(x, zc) which describes the fast equilibrium manifold.

Then, there exists a positive time delay ∆t and a minimum
scale separation ε∗ such that the control law zc = φs(x)
which stabilises the perturbed system

ẋ = f̄(x, z) = f(x, z, ϕ(x, z)), (17)
stabilises also the overall system (16) ∀t ∈ [t0 + ∆t;∞[,
for a sufficiently small time scale factor ε < ε∗.

It will be shown that the fast control, in the slow subsys-
tem, can be replaced by it expression on the equilibrium
manifold, which triangularises the overall system. This
way, and using the above assumptions, we can stabilise the
system (16) with a control law designed on the following
lower triangular system

ẋ = f̄(x, z), (18a)
εż = g(x, z, u). (18b)

A backstepping procedure allows simplifying the nonlinear
control design.

Proof. Since fast subsystem is affine in control, we can
write

u = ϕ(x, zc) + φ̃f (z̃), (19)
where z̃ = z − zc is the distance to the equilibrium
manifold. Thus, the boundary layer equation

˙̃z = g̃x(zc, z̃, φ̃f (z̃)) (20)
is exponentially stable by assumption. By application of
Tikhonov’s theorem, present in Kokotovic et al. (1986),
we know that there exists ε∗ and ∆t such that under
assumptions the perturbed system (18) is equivalent to the
original system (16) over a time delay ∆t. This complete
the proof.

4.2 Application to the hypersonic vehicle

A critical step for the use of the preceding theorem is to
solve the fast equilibrium manifold equation g(x, z, u) =
0. In aeronautics, this equation relies on the rotational
dynamics equilibrium equation. Assuming we have a linear
approximation of the aerodynamic momentum expression,
the fast equilibrium manifold is given by

CM (α, δ) = 0 = CM0 +
∂CM
∂α

α+
∂CM
∂δ

δ, (21)

and theorem 2 allows us to consider that fins angles have
to stabilise fast dynamic so quickly that its value on the
equilibrium manifold is a sufficiently good approximation
to use it in the slow dynamics. Therefore,we can rewrite
equation (4) as

C̄L = CL0 + CLαα. (22)
As far as drag is concerned, the polar equation C̄D ≈
CD0 +CDlC̄2

L provides an elegant way to describe the drag
function, since it remains valid in the hypersonic domain.

5. STABILITY AND STABILISATION OF THE (V, γ)
SLOW SUBSYSTEM

Assumption 1. The curvature of the earth is neglected and
Coriolis force is replaced by a constant offset on gravity.



Assumption 2. The air density ρ(h) is supposed to be
constant for the domain of altitude.
Assumption 3. Thrust T is assumed to be state indepen-
dent.

Under the preceding assumptions, we can write the (V, γ)
dynamics as

V̇ = t− d(l)Λ(V )− g sin γ, (23a)

γ̇ =
lΛ(V )− g cos γ

V
, (23b)

where t = T
m , d(l) = 1

2mρ(h)SrefC̄D and l = 1
2mρ(h)SrefC̄L.

Such a system is a variation of the Zhukovskii oscillator
(see Andronov et al. (1987) and references inside).

5.1 Existence and uniqueness of equilibrium

Let f be the lift-to-drag ratio; the speed equilibrium is
given by solving the polynomial equation

(lΛ(V ))2 +
Å
t− l

f
Λ(V )

ã2

− g2 = 0. (24)

Since Λ(V ) maps R+ → R+, we are looking for real pos-
itive roots of equation (24). Calculus of the discriminant
to find a condition for real roots existence leads to the
condition

t2 < g2

Å
1 +

1
f2

ã
. (25)

Moreover there exists only one positive solution if t2 < g2.
Else, in the case

g2 < t2 < g2

Å
1 +

1
f2

ã
, (26)

there exists another (low-speed and high flight path angle)
equilibrium position where flight is mainly sustained by
thrust. However, this equilibrium is not in the foreground
of this study, since hypersonic atmospheric flight cannot
be maintained with such high flight path angle.
Assumption 4. The hypersonic airbreathing vehicle is sup-
posed to keep the flight path angle low, e.g. γ is small.

This last assumption simplifies (V, γ) dynamics as

V̇ = t− d(l)Λ(V )− gγ, (27a)

γ̇ =
lΛ(V )− g

V
, (27b)

and an approximation of the equilibrium is given by

γ0 =
t0
g
− 1
f0

, V0 = Λ−1

Å
g

l0

ã
. (28)

5.2 Stability of the equilibrium

Definition 1. (C1-dissipativeness). The system ẋ = ζ(x) is
C1-dissipative if there exists a C1 Lyapunov function W
(i.e. positive definite and proper) satisfying

∂W

∂x
(x)ζ(x) ≤ 0 ∀x ∈ Rn.

Proposition 3. (Dissipativeness of flight). Given three pos-
itive constants l0, d0 and t0 < g, the Zhukovskii oscillator
defined by (27) is C1-dissipative and its unique equilibrium
is exponentially stable.

Proof. Uniqueness of equilibrium is already established,
so we focus on stability. Choosing as a Lyapunov function

W (V, γ) =
∫ V

Λ−1( gl0
)

Λ(v)− g
l0

v
dv +

g

2l0

Å
γ − t0

g
+
d0

l0

ã2

,

(29)
with

∂W

∂V
=

Λ(V )− g
l0

V
,

∂W

∂γ
=
g

l0

Å
γ − t0

g
+
d0

l0

ã
, (30)

leads to

Ẇ (V, γ) = −d0

V
(Λ(V )− Λ(V0))2 . (31)

This proves the C1-dissipativeness of (27). Secondly, given
a compact set C included in a neighborhood of the
equilibrium point, the set {(V, γ) ∈ C : Ẇ (V, γ) = 0}
contains a unique invariant point (V0, γ0). Therefore, using
LaSalle theorem we can establish the asymptotic stability
of (V0, γ0).

Exponential stability can be proved by studying the equi-
librium tangent’s approximation: under the condition 3

∂Λ
∂V

< 4f2 Λ(V0)
V0

, (32)

the real part of the eigenvalues of the dynamic first order
approximation is given by − l0

2f
∂Λ
∂V . This ends the proof.

5.3 Stabilisation of the (V, γ) subsystem

The reference trajectory is assumed to be given in terms
of a sequence of (Vc, γc) to be reached. Thus we can find
using (28) a couple lc and tc, such that equilibrium of the
system (27) coincides with (Vc, γc).

From the C1-dissipativeness of the system, it appears
that the stabilisation of the system can be achieved by
any control law of the form u = ϕ (−LgW (V, γ)) + uc,
where ϕ is a monotonic increasing C0 function such that
∀x ∈ R, ϕ(x)x ≥ 0. This allows using bounded functions
as control laws.

For example, defining sat(x, a, b) = min(max(x, a), b); a
couple of control laws for l and t could be

l = sat
Å
−kl ∂W

∂γ
V + lc, l, l̄

ã
, (33)

t = sat
Å
−kt ∂W

∂V
+ t0, t, t̄

ã
+ (d(l)− d(lc))Λ(V ), (34)

which can be bounded if we restrict Λ(V ) to a closed set.
The Figure 4 shows the phase plane of a such controlled
(V, γ) subsystem.

5.4 Extension to the airbreathing case

We no longuer take into account assumption 3. In equation
(11) thrust was written as function of α and V . But from
(22) a certainty equivalence exists between α and l. So we
can rewrite thrust as

t = ε(l)IVsp(V )η, (35)
where ε is a saturated function, locally affine in l, obtained
by replacing α in (12). The control inputs are now η and
l; so the (V, γ) subsystem has to be rewritten as
3 Verified in practice; when Λ(V ) = V 2 it reduce to f2 > 1

2
.
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V̇ = ε(l)IVsp(V )η − d(l)Λ(V )− gγ, (36a)

γ̇ =
lΛ(V )− g

V
, (36b)

for which exists an equilibrium at

V0 = Λ−1

Å
g

l0

ã
, γ0 =

ε(l0)IVsp(V0)η0

g
− 1
f0

. (37)

Proposition 4. ( C1-dissipativeness of airbreathing flight ).
Given three positive constants l0 : ε(l0) > 0, d0 and
η0 : t(l0, V0) < g, the airbreathing flight defined by (36)
is C1-dissipative and its equilibrium, defined by (37), is
asymptotically stable.

Proof. Derivating Lyapunov function (29) leads to

Ẇ (V, γ) = −d0

V
(Λ(V )− Λ(V0))2

+
ε(l0)η0

V
(Λ(V )− Λ(V0))

(
IVsp(V )− IVsp(V0)

)
. (38)

Since ε(l0)η0 is positive, and Λ and IVsp are monotonic
functions respectively increasing and decreasing, we con-
clude to the C1-dissipativeness of system (36). Asymptotic
stability can be established similarly as in proposition 3.

Due to the bilinear input effect, controlling system (36)
leads to a control allocation problem between thrust and
drag effect. Solving such a nonlinear problem —e.g. by
cost formulation— is a difficult problem which will not
be addressed here. In a perspective of extending control
law (34) we will keep the same l as in Section 5.3. By
noting lc and ηc the couple of constant controls such that
equilibrium of the (V, γ) subsystem coincides with (Vc, γc),
a stabilising control law for the system (36) is given by

l = sat
Å
−kl ∂W

∂γ
V + lc, l, l̄

ã
, (39)

η = ηc +
1

ε(l)IVsp(V )

ß
sat
Å
−kt ∂W

∂V
ε(l)IVsp(V ), t, t̄

ã
+ (d(l)− d(lc))Λ(V )− ηcIVsp(Vc)

(
ε(l)− ε(lc)

)™
,

(40)

which can be bounded if we restrict V to a closed set.

6. BACKSTEPPING OF THE LIFT CONTROL LAW

As the slow subsystem control law has been designed,
backstepping is a powerful tool to find a control Lyapunov
function stabilising the overall system by extending (29).
We need two back steps in order to stabilize lift and pitch
dynamics.

6.1 First step: stabilisation of α

We extend the dynamic of the system to

V̇ = ε(l)IVsp(V )η − d(l)Λ(V )− gγ, (41a)

γ̇ =
lΛ(V )− g

V
, (41b)

l̇ = CLα (q − γ̇) . (41c)
Let φγ(γ) be the control law defined in (39), the Lyapunov
function 4

W2(V, γ, l) = kεW (V, γ, l) +
1
2

(l − φγ(γ))2 (42)

is derived along the solutions as

Ẇ2(V, γ, l) = kεẆ (V, γ, φγ(γ))−CLα
Λ(V )
V

(l − φγ(γ))2

+ (l − φγ(γ))
ï
kε
∂W

∂γ

Λ(V )
V

+ CLα

Å
q − φγ(γ)Λ(V )− g

V

ã
− ˙̆
φγ(γ)

ò
, (43)

and therefore is definite negative by choosing
q = sat(−kl(l − φγ(γ)), q, q̄) +Q, (44)

where

Q = C−1
Lα

Å
˙̆

φγ(γ)− kε ∂W
∂γ

Λ(V )
V

+ CLα
φγ(γ)Λ(V )− g

V

ã
.

(45)

6.2 Second step: stabilisation of q

As equation (44) is defined as a q control law, then we
consider

V̇ = ε(l)IVsp(V )η − d(l)Λ(V )− gγ, (46a)

γ̇ =
lΛ(V )− g

V
, (46b)

l̇ = CLα (q − γ̇) , (46c)
q̇ = c0 + cll − cqq + cδ(1 + cδll)δ. (46d)

Noting φl(l) the control law defined in (44), the Lyapunov
function

W3(V, γ, l, q) = W2(V, γ, l, φl(l)) +
1
2

(q − φl(l))2 (47)

is derived along the solution as

Ẇ3(V, γ, l, q) = Ẇ2(V, γ, l, φl(l))− cq(q − φl(l))2

+ (q − φl(l))
ï
CLα(l − φγ(γ)) + c0 + cll

− cqφl(l) + cδ(1 + cδll)δ − ˙̄
φl(l)
ò
. (48)

Finally, choosing the control law
δ = sat(−kq(q − φl(l))(1 + cδll), δ, δ̄) +D (49)

4 The kε coefficient is needed because of time scale separation.



globally stabilizes the hypersonic vehicle’s model defined
by (46), where

D = −(cδ(1 + cδll))−1

·
Å
CLα(l − φγ(γ)) + c0 + cll − cqφl(l)− ˙̄

φl(l)
ã

. (50)
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Fig. 5. Stabilisation of a representative nonlinear vehicle
using the control law (49).

7. SIMULATION RESULTS

The simulation results of the control law (49) 5 are
presented on Figure 5. We used for simulation a fully
nonlinearly parameterised aerodynamics and an altitude-
dependent perturbation wind. In order to illustrate some
limits of the controlled HSV, initialisation has been set far
from equilibrium.

As it can be seen, the influence of propulsion on rotational
dynamic is clearly covered by aerodynamic forces, and
robustness to parameters uncertainties 6 is satisfied.

The control law has been shaped in order to saturate the
AoA of the vehicle: first it is saturated by a angle limit (e.g.
to guarantee air inlet properties), and next, after altitude
decreases, AoA is saturated by vertical load factor (e.g. to
preserve body’s structure).

5 We only shaped γc in order to stabilize altitude.
6 Variation of ±20% on aerodynamics and propulsion parameters.

As far as propulsion is concerned, we inversed η consider-
ing linear approximation of the characteristic ΦiIΦi

sp (Φi).
The main part of propulsion available is currently used
during acceleration of the HSV, and the control allocation
problem discussed in Section 5.4 appears slightly during
high AoA phases, since thrust remain available even in
this situation where drag dramatically increase.

8. CONCLUSION

The global nonlinear control law which has been addressed
here is a first attempt to assign a Lyapunov based flight
nonlinear control law, allowing to trade with hard nonlin-
earities like saturations. The assumptions made here are
not very restrictive. Extension of such a control law can
be performed on any flying vehicle with little small path
angle.

There is many perspectives opened by such a nonlinear
control law. We have to extend our work to the fully
dimensioned model, and to take in account of altitude
impact on the dynamics. Others perspectives are to trade
with the control allocation problem. We also need to ro-
bustify this control law to model uncertainties, using e.g.
nonlinear integrators. Thirdly, we have to find guarantees
of boundedness of η without obtaining suboptimal gains
on kt. Finally we need to find robust control laws guaran-
teeing stability under saturated angle of elevators δ.
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